A

/\

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

A
A

THE ROYAL A

SOCIETY

PHILOSOPHICAL
TRANSACTIONS

PN

A \

L

SOCIETY

OF

P §

' \

y

OF

Downloaded from rsta.royalsocietypublishing.org

TRANSé(FZTIONS SOCIETY

PHILOSOPHICAL THE ROYAL

The Radiation and Scattering of Surface Waves by

a Vertical Circular Cylinder in a Channel
C. M. Linton and D. V. Evans

Phil. Trans. R. Soc. Lond. A 1992 338, 325-357
doi: 10.1098/rsta.1992.0011

i i i Receive free email alerts when new articles cite this article - sign up in
Email alerti ng service the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to:

http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1992 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;338/1650/325&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/338/1650/325.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

A

|
\\ \\
2

A

L3
Y \

A

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \

A

¥y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

The radiation and scattering of surface waves by a
vertical circular cylinder in a channel

By C. M. Lintox AND D. V. Evaxs
University of Bristol, University Walk, Bristol BSS 1TW, UK.

Contents

PAGE

1. Introduction 325
2. Channel multipoles 328
3. The general radiation problem 335
4. The scattering problem 341
5. Truncated cylinders 345
6. Conclusion 355
Appendix. Behaviour of channel multipoles near cut-off frequencies 356
References 356

In this paper we consider the problems of the radiation and scattering of surface
gravity waves by a vertical circular cylinder placed on the centreline of a channel of
width 2d and depth H, and either extending from the bottom through the free surface
or truncated so as to fill only part of the depth. These problems are solved, for
arbitrary incident wavenumber k, by constructing appropriate multipoles for
cylinders placed symmetrically in channels and then using the body boundary
condition to derive a set of infinite systems of linear algebraic equations. For the
general problems considered here, this method is superior to the more usual approach
of using a set of image cylinders to model the channel walls, in particular the
occurrence of modes other than the fundamental when £d > 3r is accurately modelled
and the correct form predicted for the far-field.

1. Introduction

In three recent papers (Calisal & Sabuncu 1989; Yeung & Sphaier 1989«, b, hereafter
referred to as I, IT and III respectively) problems concerning the hydrodynamic
properties of a vertical circular cylinder, immersed through the free surface and
extending part way to the bottom, situated in the centre of a channel have been
considered using linear water wave theory. One reason for interest in these problems
is because of the need to know how the side walls of a wave tank affect the results
of experiments on relatively large models. Many of the problems associated with the
solution of such problems can be explained with reference to much simpler problems
and so we will begin by considering one such problem here.

We will examine the problem of a plane wave incident on a vertical circular
cylinder that extends throughout the fluid depth and is placed symmetrically in a
wave tank. Owing to the constant depth variation in this problem and the symmetry
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326 C. M. Linton and D. V. Evans

of the geometry, the problem is equivalent to the two-dimensional acoustic
scattering of a wave normally incident upon an infinite array of equally-spaced
identical circular cylinders, a problem with a very long history (see, for example, von
Ignatowsky 1914, 1915; Lamb 1945, p. 537). There are many methods of solution for
this problem including the multiple scattering method of Twersky (1952) and the use
of Green’s functions (Twersky 1956, 1962) but the most often used is an extension of
a direct method of solution devised by Zaviska (1913) for the scattering of an
incident plane wave by a finite array of circular cylinders. In the context of water
waves these methods were first used by Spring & Monkmeyer (1974) for the finite
array case and by Spring & Monkmeyer (1975) for the case of an infinite row of
cylinders, whereas Linton & Evans (1990) provided a major simplification to the
solution for the case of a general array. The problem of the radiation and scattering
of surface waves by an infinite row of submerged ducts was considered, using
essentially an extension of the method of Twersky (1962), by Miles (1983) from the
point of view of wave energy absorption.

The main idea of the direct method is to express the total velocity potential as a
sum of an incident wave and a general circular wave emanating from each cylinder
in the array. In the case of a plane wave normally incident on an infinite row of
identical cylinders all these circular waves will be identical and thus the body
boundary condition need only be applied on one cylinder. By using Graf’s addition
theorem for Bessel functions these circular waves can be expressed in terms of
coordinates centred on one particular cylinder and then the boundary condition can
be applied on that cylinder giving rise to an infinite system of linear algebraic
equations. To solve such a system numerically a truncation procedure must be used
and this corresponds to using only a finite number of circumferential modes to
represent the cylindrical waves. This method forms the basis of the solution procedure
used in II and III.

In I a slightly different, and less satisfactory, procedure is used. They consider the
case of a cylinder situated in the middle of a row of N cylinders (in fact they use
N = 3) and use this as an approximation to an infinite row of cylinders. This approach
has a major drawback due to the fact that the solution to the problem with an infinite
row of cylinders is inherently two-dimensional, whereas any problem concerned with
a finite array of cylinders is not. It is well known that at any given wavenumber a
finite number of propagating modes can exist in a channel and that as the
wavenumber increases so does the number of modes. In fact if k is the wavenumber
and the channel width is 2d then if (j—1)m < kd < (j—3)m, (j = 1)j modes are
possible. Thus if an incident wave is scattered by a cylinder in a channel there will
be up to j reflected and j transmitted propagating modes. The far field at x = + o0
will therefore look like a finite sum of plane waves. However, if we model the
situation by a row of N cylinders then however large we take N, sufficiently far away
from the cylinder group the wave field will look like an outgoing circular wave and
so the far-field behaviour can never be accurately modelled.

In theory the method used by Spring & Monkmeyer (1975) which forms the basis
for the analysis used in II and III does not suffer from this drawback since all the
‘image’ cylinders are taken into account. However in this formulation the velocity
potential is described in terms of an infinite sum of circular waves, each centred at
a different point, each one of which is only known approximately from the solution
to a truncated system of equations and so predicting the correct far-field behaviour
is still virtually impossible.

Phil. Trans. R. Soc. Lond. A (1992)
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The radiation and scattering of surface waves 327

Another difficulty which arises when using this method is the occurrence of slowly-
convergent Hankel series as is described in Thomas (1991) though a careful
treatment involving integral representations can alleviate the problems, as was done
in II and III. Finally the method becomes fairly unwieldy when used to solve
problems involving truncated cylinders and in II and III the authors found it
necessary to neglect the (albeit small) interference effects caused by non-propagating
modes.

In this paper we will consider problems involving circular cylinders in channels
using a fundamentally different method which correctly predicts the far-field
behaviour, avoids the treatment of slowly convergent series and is, in principle,
exact. The method is based around the construction of suitable multipoles for
channel problems. Thus when considering a channel of water of depth H and width
2d suitable multipoles will be solutions of Laplace’s equation in —o0 < & < 00, |y| <
d, —H < z < 0 which are singular at (z,y) = (0,0) and which satisfy the condition of
zero normal velocity on [y| = d. They must also look like outgoing plane waves as
|zl > o0 or else be exponentially small there. The key to the construction of these
multipoles is the derivation of suitable integral representations for solutions to
Laplace’s equation in a laterally unbounded fluid which can then be modified to take
account of the channel walls using a technique similar to that used by Thorne (1953).
The procedure is fairly complicated but picks out the correct far-field behaviour in
a natural way.

Once the multipoles have been constructed a wide class of problems can be solved
in a straightforward manner including both scattering and radiation problems,
problems involving cylinders which occupy the whole depth of fluid and problems
involving truncated cylinders, either occupying —H <z<-—D or —D <z<0,
D < H).

In a recent paper Callan et al. (1991) proved the existence of trapped modes in the
presence of a circular cylinder extending throughout the water depth placed
symmetrically in a channel. In this paper it was proved that for a cylinder of any
radius @ < d a trapped mode which is antisymmetric about y = 0 exists at some value
of kd less than the first antisymmetric cut-off frequency 3m. In this problem trapped
modes are solutions to the homogeneous boundary-value problem (zero normal
derivative on all solid boundaries) where no waves are radiated down the channel and
thus represent modes of finite energy. Clearly the presence of a solution to the
homogeneous problem implies the non-uniqueness of the solution to a forcing
problem at that frequency and so we expect singular behaviour in the solutions to
problems which are antisymmetric about the centreline of the channel at certain
discrete frequencies.

In §2 channel multipoles are constructed and expansions in polar coordinates
developed. A general radiation problem for the vertical cylinder extending
throughout the depth is considered in §3 in which a general condition on the normal
fluid velocity on the cylinder is imposed. The problem is reduced to the solution of
sets of infinite systems of equations where the right-hand sides involve the Fourier
coefficients of the general boundary condition on the cylinder. Attention is then
given to surge and sway motion of a rigid cylinder and in particular to the
computation of the added mass and damping coefficients. A global relation between
the damping coefficient and the far-field amplitude is used as a check on the results.

In §4 the scattering by the cylinder of an incident plane wave is considered and
shown to be a particularly simple example of the general formulation given in §3. The

Phil. Trans. R. Soc. Lond. A (1992)
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328 C. M. Linton and D. V. Evans

number of multipoles required to achieve accurate results in this case is extremely
small. In addition to computation of the reflection and transmission coefficients for
the different modes, computations are also made of the first-order oscillatory force
and the mean second-order force on the cylinder.

Both the scattering problem and the radiation problems of surge, sway and heave
for truncated cylinders are considered in §5 where now appropriate eigenfunctions
for an interior fluid region are needed to match with the multipole potentials across
the common fluid boundary. The resulting sets of infinite systems of equations are no
longer uncoupled as was the case for the cylinder extending throughout the depth
where a separate infinite system was obtained for each depth mode. Curves are
presented of the added mass and damping coefficients in all modes of oscillation as
well as the fundamental reflection coefficient for the scattering problem for this case.

The values of kd for which trapped modes occur are also determined, which
confirm and extend the results of Callan et al. (1991).

2. Channel multipoles

Cartesian axes are chosen with the mean free surface the xy plane and z measured
vertically upwards, the fluid bottom being z =—H. The fluid is contained in a
channel, the sides of which are |y| = d, — 00 <z < 0. We will derive expressions for
multipoles suitable for the solution of Laplace’s equation in such a channel. With the
usual assumptions of an inviseid, incompressible fluid there exists a harmonic
velocity potential @(x,y,z,t). It is further assumed that all motion is time-harmonic
with angular frequency w and so assuming the linear theory of irrotational surface
waves we can write

D(x,y,2,t) = R{p(x,y,2) e . (2.1)
The condition that must be satisfied on the mean free surface (z = 0) is
K¢ = 0¢/0z, (2.2)

where K = w?/g. Separation of variables shows that suitable depth eigenfunctions
for this problem are

F(2) = M3 cosk,, (z+H), (2.3)
where M, =31 +sin2k,, H/2k,, H) (2.4)
and k,, satisfies k,tank, H+K = 0. (2.5)

Here k,,,m > 1, are real and positive, while k, =ik, k real and positive. The
functlons [m(2) satisfy the orthogonality relatlons

1 0

Specifically then we look for functions ¢, ,,(z,y), symmetric about the centreline
of the channel, and ¢3, . (x,y), antlsymmetrlc about this line, which satisfy

(V2=k2) b= (VP=k2) %, =0 O0<y<d, nm=0,1,.., (2.7)
05, m/Oy = g% /Oy =0 on y=d, (2.8)
0P5,. m/0y =0 on y=0, (2.9)

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

a
/,// \\
/

A
( P 9

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

The radiation and scattering of surface waves 329
and am=0 on y=0. (2.10)

These functions will be singular at the origin and will decay exponentially as |z]| - oo
if m > 1, whereas if m = 0 they will behave like outgoing plane waves as |z| > c0.
Polar coordinates defined by

x=rcosf, y=rsind,
will also be used.

In the absence of the channel walls appropriate choices for ¢3, , are HY (kr) cos nf
for m = 0 and K, (k,, 7) cosnb for m > 1, which are even about 0 7 (x = 0) if n is
even and odd about this line if % is odd. For @5 m we replace cos nf by sin 76 in these
formulas. It should be pointed out that we could equally well use H? in the following
procedure, the resulting multipoles would be the same. There are many possible
integral representations that can be used as starting points in the construction of
channel multipoles. Here we choose

5 b—ico
H,(kr) = JJ elfreosu ginw=r/2 qe)  _m<g <0, 0<b<m, (2.11)

n a+ico

(Erdélyi et al. 1953, p. 20), where for simplicity we have written H, for H", and

. (Pb—ic0 g
K, (k,7) = %iJ eTkmreoswginu e, _lp < g, b < I, (2.12)

a+ico

(Erdélyi et al. 1953, p. 24). The Hankel function case will now be considered in detail.
A simple change of variable leads to

O+t '
H, (kr)i®el"? = ——f elfzcoshagkysinhagnady g <g<0, 0<b<m.
T Ji(a+6)—w

(2.13)

By restricting the range of 8 we can make the limits of integration independent of 6.
Thus

) ) i o+in . . .
Hn(kf) i*einf — __EJ‘ elkzcosha gkysinha gna do‘7 0<6<m. (2_14)

It follows that

s (ootin
H,,(kr)cos2nl = —(— 1)"lf ekvsinhe oog (kx cosh o) e 72" da (2.15)

—0o0
and this integral can be converted into a single integral from 0 to oo as follows. By
splitting the integral into four parts, namely (— o0, 0), (0,3in), (}in, in) and (in, 0o +im)
and making the substitutions a =—v, a =iint—u), a =i(ln+u) and a =v+in
respectively, the following expression is obtained:

1
H,,(kr)cos 2n = gf etV oSt oog (ka sin u) cos 2nu du

TJo

—(—1)"%f e~ k¥sinhv ooq (L cosh v) cosh 2nw dv.  (2.16)
0

Phil. Trans. R. Soc. Lond. A (1992)
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330 C. M. Linton and D. V. Evans

We can also derive
2 (7
H,, . (kr)ycos (2n+1)0 = EJ etfycosu gin (kx sinu) sin (2n+ 1) w du

0

s

—(=1)" %J e~ FYsinbv gin (kx cosh v) cosh (2n+ 1) v dw,

0

2i [
H,, (kr)sin(2n4+1)0 = —;lf ety oS oog (ka sinu) cos (2n+ 1) udu
0

— (= 1)”%f e kysInhY oq (kx cosh v) sinh (20 + 1) v dv,

T Jo

and

1
H,,(kr)sin2nf = —= | e*¥°S%gin (ka sin u) sin 2nu du
T Jo

BN 0
+(— 1)”%f e kUsinhvgin (kx coshv) sinh 2nv do.

0

These integral representations are all valid for y > 0.
It is convenient to define the following functions:

—i(l—e)e, (<1,
V(t)={ H )

(t2—1)z, t>1,
_ [cos[2narcsint], 1< 1,
T {(—1)" cosh [2narcosht], t>1,
cos|[(2n+ 1) arcsin ¢) t< 1,
Cana(l) = {i(—l)"sinh[(2n+1)ar00sh ), t>1,
sin [2 arcsin ¢], t <1,
Saall) = {—i(—l)"sinh [2rarcosht], ¢>1,
_ [sin[(2n+1)arcsint], t<1,
Santa {(— 1)*cosh [(2n+1)arcosht], > 1.

Note that the definitions for ¢ < 1 and ¢ > 1 are equivalent since
arcosh ¢ = i(arcsin¢—1im).
We then make the substitutions

u = arcsint, v = arcoshl{,
which leads to

21 [*
H,,(kr)cos2n = — EIJ vl e T cos kat ¢y, (1) dt,
0

2i (*
H,, . (kr)cos(2n+1)0 = ——n-l v le ™Y sin kat s, (t) dt,
0

Hyp iy (kr)sin (2n+1) 0 = —%j v le ™Y cos kat ¢y, (1) dt,

0

Phil. Trans. R. Soc. Lond. A (1992)
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and H,,(kr)sin2n6 = —%J v le ™Y sin kat s, (t) dt. (2.29)

0

Multipoles can now be constructed using the method of Thorne (1953). To satisfy
the boundary condition on y = d we add to H,,(kr)cos2n6 a function of the form

2i (*

- B(t) cosh kyy cos kxt c,,, (t) dt.
0

Equation (2.8) then implies that
B(t) = e % /y sinh kyd
which has singularities for real t. Thus the function

2i [ cosh [ky(d—

Vo= =71 —ﬁmﬁTy;/Hcos et ¢, (1) dt, (2.30)
where the integral is taken to be a principal value integral at all the singularities,
satisfies both (2.7) with m = 0 and (2.8). We need to determine the behaviour of this
function as |x| - 0.

The integrand, considered as a function of a complex variable ¢, has simple poles
at kyd = +pmi, p=0,1,...,i.e. at t = +¢,, where

t, = (1= (pr/kd)?y, p=0,1,.... ], (2.31)
t, = i((pn/kd)*—1), p=j,+1, (2.32)
where Jsm < kd < (j,+1)m. (2.33)

To determine the behaviour of 43, , as - 00 we note that the integrand is real for
all real t and thus that

2i ® cosh [ky(d—y)]
S = — ikt
20,0 ER{:fO Sinh v e*re, (£)di;. (2.34)

It can now be shown by considering the integral around the contour formed by the
quadrant R{t} > 0, 3{t} > 0, with indentations around all the poles that

i .
S0~ T 20 €pty! cos (pry/d) sin kxt,, ¢y, (t,) as x> 00, (2.35)
P
where ¢y =1, ¢, =2 for p > 1.
We thus see that suitable multipoles for propagating modes, symmetric about
p propagating Y

both y = 0 and « = 0, are

s, o(@,y) = Hy,(kr) cos QnB—%

0 e—kyd
. f —————cosh kyy cos kxt c,,, (t) dt

o ¥ sinh kyd

Js
+% > €, t," cos (pry/d) cos kxt, ¢y, (t,)  (2.36)
=0

Js
~i§‘_,e t-1 cos (pry/d) e *%oc, (1) as x—>=+00. (2.37)
kd p'p Ry 2nllp
p=0

Phil. Trans. R. Soc. Lond. A (1992)
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332 C. M. Linton and D. V. Evans
Similarly

21 00 e~k'yd .
Bonsr, 0 Y) = Hypyy (kr) cos (2n+1) 0——;}0 Y sinh kyd cosh kyy sin kaxt s,, ., (t) dt

Js
2 eyt cos (pry/d)sin kat, s, (1

+— ) (2.38)
kd ;= p
. js
~¢é goept;leos (pry/d) e *otos, () as a->+ 0. (2.39)
P
For the modes antisymmetric about y = 0 we find
a H, (krysin2n0—2 7 Gnh kyysink d
Pon.o(®,y) = Hy,(kr) sin2n —Eﬁ mbm vy sin kat s, (¢) dt
2 o 1 .
+E Zl 7, sin ((p —3) Ty /d) sin kxt, 85,,(7,) (2.40)
=
T 21 L ~1 3 1 d +ikar, 241
~F g E (=Y ) e s (1) s wotoo,  (241)
p=
and
8 H,, .. (kr)si o2 Gank J d
¢2n+1,o(xa?/)— an+1(k7) sin (2n+1) _&_Jto mbm Yy cos kat ¢y, 4 (8) di

2 Ja .
+E X 7, sin ((p—1) ny/d) cos kat,cy,i0(1,)  (2.42)

p=1
9 Ja
~ Icz_d X 1t sin((p—3) ny/d) e **we,,  (T,) as x>t 0, (2.43)
p=1
where the integrands now have simple poles at kyd = + (p—1)mi, p =1,2,...,i.e. at
t =47, where 1 .
b Tp = (1-—((])—%)Tt/k'd)2)2, p= 1’2""’]a’ (2'44)
7y = i(p=Pn/kd)P=1),, p>j,+1, (2.45)
where (Ja—p) T <kd < (j,+3m. (2.46)

Note that if kd < im, j, =0 and all the poles are imaginary. If this is the case
&.0(x,y) is exponentially small as |x| > co.
Expansions for these multipoles in terms of polar coordinates can be obtained
using the following identities (see, for example, Abramowitz & Stegun 1964,
equations (9.1.42)—(9.1.45)).

cosh kyy cos kat = § €q+J aq(kr) cos 290 ¢y (1), (2.47)
a=0
cosh kyy sin kat = 2 § Sogia(kr) cos (2q+ 1) O.s,,.4(1), (2.48)
a=0
sinh kyy cos kxt = —2i ;} JSogra(kr)sin (2q+1) O ¢y 4 (1), (2.49)
q=0
sinh kyy sin kat = — 2i § Joq(kr) sin 290 s, (t). (2.50)
q=1

Phil. Trans. R. Soc. Lond. A (1992)
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The resulting expressions are

wo(r:0) = H,(kr) cosnf+ ¥ Efq,n; 0} J ,(kr) cosqb, (2.51)
q=0

and mo(r.0) = H,(kr)sinnd+ ¥ E{q,n;0}J ,(kr)sin g6, (2.52)
a=1

where

2ie, [© e e, (1) cy,(t)
20.2n: — q 2q 2n q 1
E{2q,2n;0} = fo sinh fvd dt+kd Z Eplp Coglly) Con(ly,),  (2.53)

A [PeT sy 10 (1) Sapaa(t) 2
B9 1,2 2¢+1 2n+1 “ ]
{ q+ n+1; O} TC , ysinh k’yd dt+ ]Cd Z €p t s2q+1(tp) q2n+1(tp)’

(2.54)

B{2q 2n:0p = 2 wdwiz 15 >0), (2.55
a q; ) - P 0 ')/C‘OShk')/d k’d T 2q( )8211,( p) (q )’ ( . )

, o B [T e 00 (1) Conin () 4 o -1
E {2¢+1,20n+1;0} = Fﬁ 7 cosh kyd dt+-@p§1 Tp Cogr1(Tp) Cona(Tp),
(2.56)
and
E{2q,2n+1;0} = E{29+1,2n;0} = £,{2¢,2n+1;0} = E {2¢+1,2n;0} =
These expansions are all valid for' 0 < r < 2d, —n < 6 < 7.
From (2.53)—(2.56) we have
J
] € 5 -
WU (20 2050)) = = 8,0+ 74 2 €, 3100, (1p) ey, (2.57)
=
2
R[E{29+1,2n+1;0}] = — 04 lcd E €ptp Sagia(ly ) Samsa(tp), (2.58)
RIE, 120,205 01) = = 8,0+ 22 S T snl) @20 (259)
4
and RE {29+1,2n+1;0}] = lcd Z Tp' Cogi1(Tp) Cani1(T,), (2.60)

and thus we see that in all cases the term proportional to J,,(kr) is cancelled out. The
behaviour of these multipoles as kd approaches the various cut-off frequencies from
above and below is discussed in the Appendix.

To calculate the imaginary parts of these multipoles we need to compute integrals
of the form

“ )
g(t) &,
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334 C. M. Linton and D. V. Evans

where g(t) =0 at t = xy, ..., 2;, ¥y > 2, > ... > ;> 0, ¢'(x,) # 0 and f(x,) #0, p =0,
...,J. We note the fact that

2T dt
-—:0
and thus fo =

Mg [0 [0 G S ) flay)
LAt = AN | AN, ) NN Lam—— S | — P dt.
J[O i "= Lg0" ] Lo B - T AL e t—a)
(2.61)

All the singularities are in the second integral and the integrand is integrable on each
side of each singularity. The third term can be evaluated explicitly; it is

é f/(xp) ln(-z—xg—l).
p=lg (xp) z

Y4
The case of the modified Bessel functions is much simpler as the integral
representations that result do not contain singularities. The resulting expansions are

wom(r:0) =K, (k,,r)cosnf + E Edq,n;m} 1, (k,,r)cosqb, (2.62)
=0
and S m(r,0) =K, (k,, r)sinnb+ E K lq,n;m}1(k,,r)sing0, (2.63)
=1
where E{2q,2n;m} = ¢, J:O e_?:;gzg(]iz:;;‘(t) dt, (2.64)
Ef2g+1,2n+1;m} =2 f egk'";:jﬁ (]2””;?“(” dr, (2.65)
E,{2q,2n;m} = —2f e_’;m:;‘lﬁ(]?:;;“) At (g >0), (2.66)
E{2¢+1,2n+1;m} = —2 f e_km:ii)qsfﬁ(]irzrl(” dt (2.67)

and
Ef2q,2n+1;m} = E{29+1,2n;m} = E,{2q,2n+1;m} = B {2¢+1,2n;m} = 0,

in each case m > 1.
Alternatively, for these multipoles we can write the integrals in terms of the
original variable v = arcosh¢:

9] e—lcm dcoshv

. — __{\n+q
Byi2q, 2n;mj = eo(—1) JO sinh (k,, d cosh v)

0

cosh 2qv cosh 2nvdv,  (2.68)

e—km dcoshv

Ef2q+1,2n+1;m} = —2(—1)"*‘1J sinh (2¢+ 1) vsinh (2n+ 1) v dw,

o sinh (k,, d cosh v)
(2.69)

o] e—km dcoshv

sinh 2qusinh 2nvdv (¢ > 0),
(2.70)

E 2 2 . =2_1 n+q
at2g, 2n;mp = 2(—1) L cosh (k,, d cosh v)
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The radiation and scattering of surface waves 335

0 k., dcoshv
En{2q+1,2n+1;m}=—2(—1)””[ cosz(lc dcoshv)COSh(ZQ+I)vCOSh(2n+1)vdv‘
0 m

(2.71)
Again these expansions are valid for 0 <r <2d, —n < 0 <.

3. The general radiation problem

In this section we will consider the general radiation problem for a vertical circular
cylinder of radius a < d placed symmetrically in the channel, occupying the region
r<a, —H <2< 0 so that it extends throughout the fluid depth. We write

4.9 = U 3 00 3 hnhont T ). (3.1
m=0 n=0 n=1
The function ¢(x,y,z) thus satisfies
V3¢ =0 in the fluid (3.2)
and 0p/dy=0 on |y =d. (3.3)

Also ¢ behaves like a sum of outgoing plane waves as |x| - 00. On the body (r = a)
we will assume the following general boundary condition

%% =U X fm(z)( 2 G cosmf+ X G’;‘Zymsinn0>. (3.4)
m=0 n=0 n=1
Now if we define H (kr), m=0,
_ 1
om(r) = (3.5)
' K, (kyr), m=1,

and Jkr),  m=0,
= 3.6
Sl {Iq(kmr), noy (3.6)
then S (1 0) = 3 [ Ay (1) 8t Erlgmim} £, ()] cOS g6, 3.7)
q=0
L (10) = X [y (r) Sy + B, mim) £y ()]0 g0, (3.8)
q=1
and so o o "
$= U0 S { 3 F) 3 1, 0l0)b4u Blas10) Fy 1) 500
q=0 \m=0 n=0
s { S fue) 5 [y )0+ Bl msm) /,,,mm]az,m} singf (3.9)
=1 Um=0 n=1
and ‘
a¢ o [ o i ,
i S { S fue) 3 [H] (@) Syt Bl nim) £, ()] az,m} cosgf
67' r=a q=0 \Lm=0 n=0
U0 S { 3 (o) 10080 4 Bul 03] 7 (@] 25, sind.
g=1 Lm=0 n=1

(3.10)
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336 C. M. Linton and D. V. Evans

If we also define

Zgm=Fqm@)]H ¢ m@), (3.11)
which is complex if m = 0 but real otherwise, then the orthogonality of f,(z) over
(—H,0) and of cos 2n0, cos (2n+1) 6,sin 2n6 and sin (2rn+1) 6 over (0, 1) gives rise to
the following systems of equations
0 GS
z [8qn+Es{2q’2n;m} qu m] aZn m = #a q = 0» (3-12)
n=0 ’ ' %2(1 m( )

® G5
20, +E{2q+1,2n+1;m} Z log o=—2rLm - 9>0, (3.13)
= 1% q 2g+1, ml Xen+1, a%2q+1,m(a’)

G&

2q,m

. VA a — _
n§l[8qn+Ea{2%2nam} 2q,m]a2n,m %;q m( )>

g>1, (3.14)

] Ga m
§[8qn+Eu{2q+1,2n+1;m}quH’m]agnHym=m, g=0 (3.15)

(m = 0 throughout). We note that if &, ,, and G, ,,,m = 1 are real then all the terms
in the equations with m > 1 are real and thus that all the coefficients af, ,, and of,
with m > 1 are real.

These expressions can then be substituted back into the expression for ¢(r, 6, 2).

We get

o(r,0,2) = Ua § { § fm(z)<ajym[¢7fq,m(r) Fo.m(r) Hy mla )]—l— Fq.m(") G5 )}cosq@

4=0 Lm=0 A am(@) 0T qml@)
+Ua %:] { E}; Jm(?) (ag’m[%’q’m(r) :jﬁ’ E;))% a (a)]+%02ym>} sin q0.
’ (3.16)

This expansion is valid for » < 2d. Now

J,(@) H, (@)~ Hy (@) J (@) = —2i/na
and L (2) K, () — K, () 1, (x) = 1/,
and so

(Ua)'p(a,0,2) =

v [_fol®) [ 2i f(z
k S Ap—— m o s .
q=o{kaJ’( Jolka) Go o= raao |+ X e @) al’(lc oy o+ Lok @) G5, ) cos 46

[\

a)
fO ) a _% a a fm ) a a 11
+2{/ aJ(ka )[ Jolka) Ga,0 =2 a0 ] Z o all ey, a) [“q""”q(k’"“)G‘“"]}“nqa'
(3.17)

From (3.1) and the far-field behaviour of the multipoles we see that

(Ua)_l¢(x’y’ Z) f(])ﬁd [Z pCO§ ])Tty/d +1kxtp Z (agn,()czn(tp)ii“§n+1,082n+1(tp))
»=0 p n=0

a2 | & .
+ X T—sm((p—%) ny/d) eti*es 3 (agn+1,002n+1(7p)+lagn,082n(7p))J as x—>to0.
p=1"p n=0
(3.18)
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The radiation and scattering of surface waves 337

This can be written

Pz, y,2) ~ —%[E}OA% cos (pny/d) ett»
+ anlB% sin ((p—3) Tty/d)ei““”p], (3.19)
i,
where A% = %%g (0.0 Conlly) FiSsr o Sansa(ly)) (3.20)
and By = %%Eﬂ (@8 1,0 Cans1(Tp) Ficdy o 854(7)) (3.21)

are the amplitudes of the various modes.
If we restrict our attention to rigid body motions then the normal velocity of a
point on the body surface can be written

V(t) = R{(U,, U,, Uy) + (U,, Uy, Ug) X ¥]-ne 4, (3.22)

where U,, U,, U, are the components of surge, sway and heave and U,, U;, Ug are the
components of roll, pitch and yaw. The vector r = ((x—x,), (¥ —y,), (2—2,)) is the
position vector of the point on the body surface with the origin at the centre of
rotation, (x,,¥,,2,), and n = (n,,n,,n,) is the unit outward normal. If we define
(ny, n5, mg) = ¥ x n then the body boundary condition becomes

a 6
5= El Un, (3.23)

and if ¢ is decomposed into six radiation potentials, one for each mode of motion, by

6
¢ =2 Ug (3.24)
then on the body we have
g, /on=m,;, 1=1,..,6. (3.25)

In the case of the vertical circular cylinder being considered here we have
n = (cosf,sin6,0), rxn = (z—z,) (—sin 6, cos0,0) and thus heave and yaw can be
ignored. We will also assume that the centre of rotation is (0,0, —1H).

The generalized hydrodynamic force on the body in the ith direction is given by

Fl(t) = m{XZ e—iwt} v = 15 2’ 47 55 (3.26)
where X, = ——ipa)f on,; dS. (3.27)
Sg

Here Sy is the body surface and for i = 4,5 this is clearly a moment. We therefore
have

X, =—ipw X U]-J ¢;n;dS. (3.28)
S8

j=1,2,4,5
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338 C. M. Linton and D. V. Evans

The force can be decomposed into a part in phase with the acceleration, the added
mass coefficient, and a part in phase with the velocity, the damping coefficient. Thus
we write

Fi=— 3 (A4y§+8,8), (3.29)

Jj=1,2,4,5
‘where g(t) = R{g; e (3.30)
is the displacement of the body surface in the jth mode. Thus

Xi=— X U(—-iwd;+By) (3.31)
j=1,2,4,5
and so —iwA;+ B, = ipwJ ¢;m; dS. (3.32)
SB

We will now concentrate on surge and sway motions as they will demonstrate all
the qualitative features of results for problems of this type though it is possible to
treat roll and pitch motions in a similar fashion.

For surge motion, which is symmetric about y = 0 and antisymmetric about
x =0, we write

¢1(x’y’ =a Z fm E a§n+1,m¢gn+l,m (333)

and the body boundary condition is

—ﬁ—cosﬁ—cosﬁzfm G5

o m on r=a, (3.34)

where G J fm(z)dz =M IM. (3.35)

From (3.13) we see that the equations satisfied by the unknown coefficients are

18

[Bgn+ BA20+ 1,20+ 13m} Zoi ) 8s0,m = 840 Fufa Ay @), (3.36)

0
where =0, m=0,

which represents a set of infinite systems of equations, one for each value of m. To
solve these systems numerically we must truncate them and so we solve for ¢ = 0,

. Nand m =0,...,M. In virtually all the problems that will be considered in this
paper two truncation parameters, N and M, will be required. First, N+ 1 represents
the number of multipoles used for each depth mode and, secondly, M + 1 represents
the number of depth modes used. Suitable values to take for N and M depend both
on the problem and on what one is trying to compute. The values of N and M chosen
varied with the problem being considered, but they are believed to give results
accurate to within 1% in all cases.

We define non-dimensional added mass and damping coefficients for surge motion,
1, and v, respectively, by

M Fiv, = (—iwd,, +B,,)/ioM, (3.37)
Phil. Trans. R. Soc. Lond. A (1992)
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The radiation and scattering of surface waves 339

where M = prna®H is the mass of fluid displaced by the cylinder. Thus from (3.17) and
(3.32)

. F, 2i 2 F,
=0 Fo—Zes | Tm g
/’61+1V1 kaJ;(ka) ,:Jl(ka) 0 T al,O] Z=1 kmali(km a) [al,m+‘[1(kma)Fm]' (338)
Clearly the summation makes no contribution to the imaginary part of the right-
hand side and so
2F,

W(—"—)'SR{OCI 0} (339)

v, =
This immediately shows that to compute the damping coefficient one only has to
solve (3.36) with m = 0. A relation between the damping coefficient and the energy
radiated down the channel can be found by applying Green’s theorem to the
functions ¢, and ¢, —¢, (see, for example, Srokosz 1980). The resulting formula is

Js € 2
t .
vy = nkdpzo ‘ nzoaznﬂ 0San+1( p) (3.40)

and this was used as a check on all the results that have been computed.

Curves of 4, and v, are shown for cylinders with a radius to depth ratio of 1/10 in
figures 1 and 2. It was found that to achieve accurate values for the added mass
coefficient it was necessary to use a fairly large number of depth modes and the
figures show values computed using M = 8. However the number of multipoles
required for each depth mode is small and a value of N = 1 was sufficient. Nine 2 x 2
systems of equations have thus been solved to compute each point on the curves. It
was pointed out in II that for symmetric (about both x = 0 and y = 0) bodies in
channels undergoing motions symmetric about # = 0 the hydrodynamic properties
are characterized by spikes at or near the resonant frequencies of the channel and this
can be attributed to the singular nature of ¢, ; near the symmetric cut-off
frequencies (see (A 3) and (A 4)). However, as is noted in the Appendix, ¢3,,, ( is not
singular near the cut-off frequencies and so we do not expect the same spiky response
for surge motion. We also expect any resonant response near kd = nm to be greater
for cylinders with smaller radius to channel semi-width ratios since large cylinders
clearly inhibit the occurrence of transverse standing waves more than small ones.
The figures confirm that in the case of surge there is very little resonant response near
to the cut-off frequencies.

For sway motion, which is antisymmetric about y = 0 and symmetric about x = 0,
we write

Po(@,,2) = a Z Sm(?) Z i1, m Pon+1,m (3.41)

m=0 n=0

and the body boundary condition is

0, =sinf =sinf ¥ f,(z)G%, on r=a, (3.42)
or m=0 '
where Gy =F (3.43)
From (3.15) we see that the equations satisfied by the unknown coefficients are
e 0,0 F
. VA a — q0—m
n{:O[aqn+Ea{2q+1»2n+1’m} 2q+1,m]a2n+1,m a%;’m(a)?
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340 C. M. Linton and D. V. Evans
where q=20, m=0, (3.44)

and we truncate this set of systems of equations as in the surge case above. We
define non-dimensional added mass and damping coefficients for sway motion, u, and
v, respectively, by

Hot 10, = (—iwd,, +By,) /iwM (3.45)
and so from (3.17) and (3.32)
fot+iv, = ——ﬁjO—[Jl(ka)ﬁ’O—?iai‘ 0:|~ § Ifm [ed m+ 1 (k@) F,]  (3.46)
kaJi(ka) T a1 Ky (k,a)

Again the formula for the damping coefficient can be simplified, giving

2F,

Ve = — W Riaf o} (3.47)

The formula relating the damping coefficient to the radiated energy in this case is

8 1 o0 2
. 4
Vo = Ttkdpzl - n20“2n+1,002n+1(7p) (3.48)

It was found that the convergence characteristics of the systems of equations
(3.44) were very similar to the case of surge and so in all the following results values
of N=1 and M = 8 were used. Unlike the surge results, however, the results for
sway contain many interesting features due to the singular nature of ¢3, ,, , near the
antisymmetric cutoff frequencies (see (A 1) and (A 2)). Figures 3 and 4 show some
typical results.

The curves show the added mass and damping coefficients for a cylinder for which
a/H =a/d =0.1. Figure 3 shows the added mass and we can see large spikes
occurring just below the second and third cut-off frequencies, whereas just below the
first cut-off frequency we can see the manifestation of a trapped mode frequency, a
point at which the equations are singular. In this particular case the singular point
occurs at a value of kd/m = 0.4994 (kd =~ 1.569) in agreement with the theory of
Callan et al. (1991). (From the theory in their paper we note that the value kd at
which the trapped mode occurs is independent of a/H.) Careful computation allows
the sizes of the spikes to be determined and these are indicated in the figure. Figure
4 shows the damping coefficient which is zero for kd < im (as it must be since no waves
are radiated down the channel and the damping coefficient is related to this energy
through (3.48)) and which again exhibits extremely spiky behaviour. Note that the
height of the spikes in the damping coefficient is almost exactly the same as the total
height of the corresponding spikes in the added mass coefficient. This can be
explained as follows. The damping and added mass coefficients are just the real and
imaginary parts respectively of the complex force coefficient ¢(w), say, for radiation
problems, and spiky behaviour in these quantities corresponds to a pole in the lower
half of the complex frequency plane close to the real axis. It can be shown that
causality requires the force coefficient to be analytic in the upper half-plane (see, for
example, Wehausen 1971). Near the pole w, we have ¢(w) = A(w—w,) approxi-
mately and as o increases along the real v axis a circle is described in the ¢ plane.
For the damping to be non-negative this circle, which passes through the origin, must
have its centre on the positive real axis. As w passes through the point nearest to w,,
Fq(w) passes through zero so that the peak of the damping spike coincides with a zero
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The radiation and scattering of surface waves 341

of the added mass. It is also clear that the size of the damping spike and the total
extent of the added-mass spike are both given by the diameter of the circle and are
therefore equal. We are grateful to a referee for this explanation.

Results for a larger cylinder (a/d = 0.3) are shown in figures 5 and 6. Again we see
the evidence of a trapped mode at kd =~ 1.505 and a spike just below the second
antisymmetric cut-off frequency. However, in the case there is virtually no spike near
the third antisymmetric cut-off. Again the height of the spike in the damping
coefficient is very close to the total height of the spike in the added mass.

It should be noted that the height of the spikes is not monotonic as a/d increases,
for example the peak in the damping coefficient just below the second antisymmetric
cutoff frequency has heights of approximately 57.5, 12.7, and 20.1 for a/d = 0.1, 0.2
and 0.3 respectively.

4. The scattering problem

We will assume that there is an incident wave from x = — o0 and so the problem
is symmetric about y = 0. The problem can be written in the form of a radiation
problem by writing the total potential @ as

D(x,y,2,t) = R{Y (v, y,2) e, (4.1)
A cosh k(z+ H
where V@ 9,7) = Play, )= LA EEE T 42)

Here A represents the amplitude of the incident wave and we note that
cosh k(z+ H) = My f,(2)
The function ¢ is a radiation potential which satisfies
0p _ igAM;, _igAM;
o awcosh kH’®
which is of the form of (3.4) with U = —igdMj}/aw cosh kH = U,, say,

Z kae, i"J,(ka)cosnf on r=a, (4.3)

GZn,O = __en( - l)nka‘]én(/ca)7 (4'4)
ngﬂ,o = —=2i(—1)"kal}, ,(ka) (4.5)
and G, ,,,G% , = 0 otherwise. We thus write

o0

¢ =Usafy(z) X ( 0‘2n,0¢gn,0+“;n+1,0¢;n+1,0)~ (4.6)

n=0

From (3.12) and (3.13) we see that the unknown coefficients satisfy

[3qn +Es{2q7 27?‘;O}Z2q,0] agn,o = (_1) 2q 0’ q > O’ (47)

0

iMe

2 [0+ E {29+ 1,20+ 1508 Zoy iy o] 05ni1,0 = —20(—=1)Zp411 9, ¢ 2 0. (4.8)
n=0
Unlike the problems considered in the previous section we now have just two systems
of equations to solve, each of which we truncate to an (N+1) x (N+1) system by
letting ¢ range from 0 to N. The systems converge extremely quickly and the results
shown were all computed using a value of N = 1.
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Figure 1 Figure 2
{ 254
21 201

154
Y i
10

05{

0 15 30 0 15 30
kd/w kd/w

Figure 1. Surge added mass coefficient, x,, plotted against kd/m for three cylinders with radius to
channel semi-width ratios of 0.1 (——), 0.5 (+=--- ) and 0.9 (—-). In all cases a/H = 0.1.

Figure 2. Surge-damping coefficient, v,, plotted against kd/m for three cylinders with radius to
channel semi-width ratios of 0.1 (——), 0.5 (++--* )and 0.9 (—-). In all cases a/H = 0.1.

It follows from (3.18) that

Js
+U,af,(z) €% ~ Usaf,(z) X R, cos (pry/d)e **» as x-—->—o0, 4.9)
0 0 P

»=0

Is
+ U af,(2)e*® ~ U af,(z) X T,cos (pry/d)el**» as x> 00, (4.10)
s 0 s 0 v 7/

»=0
€p - s
where R,= kdz 2 [0, Conlly) F1050 11 0 San11(lp)] (4.11)
P n=0
€ 9 .
and T,= 60p+ﬁ 2 [0, Canlly) =105 41,0 Santa(lp)]- (4.12)
p n=0
1 o0
In particular R, = T 2 (= 1), 0t 1a5, 0] (4.13)
n=0
12z .
and T, = 1+;c~(i 2 (= D)5y, 0 =1%o (4.14)
n=0

Applying Green’s theorem to i and i leads to a result which represents the
conservation of energy. It is

jS

S (R HIT, = 1 (4.15)
p=06p

and all results were checked against this formula.

It is straightforward to obtain from these formulas the behaviour of R, and 7} in
the limit as kd -0 with a/d fixed. We note that Z, , and Z, , are O((kd)?), whereas
Zy o 18 O((kd)*) for n = 2. A careful analysis of the size of the terms in (4.7) and (4.8)
as kd -0 shows that

a0~ = Zg o ~ —imi(ka)?, (4.16)
o o~ =207, o ~ —In(ka)?, (4.17)
whereas o o = O((kd)*). (4.18)
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Figure 3 Figure 4
A 1~28.8 30 I~575  |1~69
2 J v
I 2
t 0 i - 15
A I~—128.7 }
0 15 3.0 0 | 15 30
kd | w kd | m

Figure 3. Sway added mass coefficient, u,, plotted against kd/m for a cylinder with a/d =
a/H=0.1.

Figure 4. Sway damping coefficient, v,, plotted against kd/m for a cylinder with a/d =
a/H=0.1.

Figure 5 Figure 6
'~ 10.3 30 1~20.1
4
2
Y
2 r’/) — LS
=2
» ~—=9.7 N
0 1.5 30 0 1.5 3.0
kd/m kd /| w

Figure 5. Sway added mass coefficient, u,, plotted against kd/m for a cylinder with a/d = 0.3,
a/H=0.1.

Figure 6. Sway damping coefficient, v,, plotted against kd/m for a cylinder with a/d = 0.3,
a/H=0.1.

Thus from (4.13) and (4.14) we have
R, ~ —3mika®/4d (4.19)
and Ty ~ 1 +nika®/4d (4.20)

as kd — 0, recovering a result obtained by a number of previous authors, a discussion
of which can be found in Martin & Dalrymple (1988).

Typical results for the reflection and transmission coefficients for the various
modes are shown in figures 7 and 8 which show plots for cylinders with a/d = 0.5 and
0.9 respectively. The curves show the energy associated with each reflected and
transmitted mode (see (4.15) above) and thus at any particular value of kd/n the sum
of the values of the curves is one.

The velocity potential on r = a is given by (3.17) which simplifies to give

. 21U, c oo
B(a,0,2)+ U, af,(z) e"*acos? = — = fo(2) EO J;ZL/'c(c)z) cosnt (4.21)
and so the first-order force in the x direction is M{X e !}, where
X =42% a5  F (4.22)
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Figure 7 Figure 8
@ [

08 08{

04 0.4

0 s 30 0 :
kd/m kd/w

Figure 7. Energy associated with all the reflected and transmitted modes plotted against kd/m for

a cylinder with a/d = 0.5. (a) [RBof*, (b) [Ty]*, () 3, 1B, (d) g6, IThI%, (¢) 3o 1Rl (f) dto | T3l

Figure 8. Energy associated with all the reflected and transmitted modes plotted against kd/x for

a cylinder with a/d = 0.9. (a)-(f) as figure 7.

Figure 9 Figure 10
21, 471 ¢
T | =
= <
= | ‘,
1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAA 2
0 15 3.0 0 15 30
kd/lw kd/m
Figure 9. First-order force magnification factor, |X/F|, plotted against kd/m for three cylinders with
radius to channel semi-width ratios of 0.1 (——), 0.5 (-=+-** ) and 0.9 (—-).
Figure 10. Mean second-order drift force magnification factor, f/f,, plotted against kd/n for three
cylinders with radius to channel semi-width ratios of 0.1 (——), 0.5 (-+-+ ) and 0.9 (—-).
and F = 4pgA tanh (kH)/k*H(ka)

is the force in the direction of wave advance on a single cylinder in the open sea
(MacCamy & Fuchs 1954). A plot of | X/F|, which is clearly independent of a/H, for
three different sized cylinder is shown in figure 9.

By using (4.21) the mean second-order drift force on the cylinder can be calculated
as was done for a cylinder in an array of cylinders in Linton & Evans (1990). This
results in

- gty 5 (M) ) Hlhosion (4.23)

—_ —1
J= thasion 2k = 0\ (ka)? T (ka) T, (ka)”

This can be non-dimensionalized by the drift force on a vertical cylinder in the open
sea which is given by

‘- 16pgA*HM, & (n(n+1) )2 1

TU (mka)? sinh 2kH ;2\ (ka)? |H, (ka)[? |H.,,,(ka)|?

(4.24)

(see, for example, Linton & Evans 1990, equation (3.10)). Previous work on drift
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W /\/\/\ y=0
y=-D
y=-H
geometry A geometry B

Figure 11. Definition sketch.

forces for bodies in channels is very limited. The reader is directed to Eatock Taylor
& Hung (1985) for a more detailed discussion. A plot of f/f, for the same three
cylinders as above is shown in figure 10.

5. Truncated cylinders

In this section we solve the radiation problems of surge, sway and heave together
with the scattering problem for a truncated cylinder using channel multipoles. We
consider two separate geometries here. Geometry A refers to a cylinder occupying the
region r < a, —D < z < 0, whereas geometry B refers to a cylinder occupying the
region r < a, —H < z < —D. The different geometries are illustrated in figure 11.

The procedure used is to construct inner and outer potentials and then match the
velocity and pressure across the common boundary. We denote by L the interval
(—H, —D) in geometry 4 and (—D,0) in geometry B and by L¢ the interval
(—H,0)-L.

The region r > a, —H < z < 0 is denoted by II and the velocity potential in this
region, ¢!, is given by (3.9). In the inner region, region I, we need a different set of
depth eigenfunctions and these are

¢ cosA,,(2+D), m>=0, geometryA,
Im(2) =1 (5.1)

N2cosk,(z+D), m =0, geometryB,
where A,, = mn/(H—D), (5.2)

1 sin 2x,, D
N =14+ 28m K
" 2< + 2k, D )’ (5-3)
and «,, satisfies

Ky tank,, D+ K = 0. (5.4)

Here «,,, m > 1, are real and positive, whereas «k, = ik, « real and positive. The
functions g,,(z) satisfy the orthogonality relations

ﬁJLgm(z) g, (2)dz = 0,yp, (5.5)

where |L| represents the length of the interval L. We also define

€, \i ki, sin k,,|L|
—a | om o Tm 4
¢ ~iff (2) g(2) dz = (Mm> |LI(k7, =A%) (geometry 4), N
T o, N,y Sl etey B) (5.6)
m L k) F y B).
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Figure 12
Figure 13
0.8 e S osg——
u u
Y 0.4
0 1.5 30 0 1.5 3.0
kd | kd/mw

Figure 12. Surge added mass coefficient, x, plotted against kd/m for three truncated cylinders,
geometry A, with D/H = 0.1 ( ), 0.5 (- ) and 0.9 (———). In all cases a/d = a/H = 0.1.

Figure 13. Surge added mass coefficient, x, plotted against kd/m for three truncated cylinders,
geometry B, with D/H = 0.1 ( ), 0.5 (oo ) and 0.9 (—-). In all cases a/d =a/H =0.1.

Figure 14 Figure 15

0.2

0.1

0 G 30 0 G 30
kd /| w kd/w

Figure 14. Surge damping coefficient, v, plotted against kd/m for three truncated cylinders,
geometry 4, with D/H = 0.1 (——), 0.5 (=== yand 0.9 (——-). In all cases a/d = a/H = 0.1.

Figure 15. Surge damping coefficient, v, plotted against kd/m for three truncated cylinders,
geometry B, with D/H = 0.1 ( ), 0.5 (oo ) and 0.9 (~——). In all cases a/d =a/H = 0.1.

We start by considering geometry 4. With the above depth eigenfunctions we can
then write the inner potential as

o0 q 0
¢l (r,0,2) = UP(r,z)+ Ua % { Z,(,(g) +m§1ﬂf1’mgm(2)l’q(/\m r)} cos q0

q=0

oo q o
+Ua % {ﬂg(,(g) + X B o 9m(2) (A 7')} sing0, (5.7)
m=1

q=1
where the harmonic function P is chosen so that ¢! satisfies the appropriate
boundary condition on z = —D. Thus for surge and sway motions P = 0, whereas
for heave motions we have

P(r,2) = XH—D) " [Y2— (2 + H)?], (5.8)
pffom=U on z=-—D. (5.9)

Note that for geometry 4 the unit normal out of the body on the bottom surface of
the cylinder is n = (0,0, —1). If we define

(r/a)?, m =0,

Iy lr) = { (5.10)

1, (A7), m =1,

which ensures that
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Figure 16 Figure17
1~23.3
4 4
2 2
u ]
0 f 0
) -2
A |~—=23.9
0 15 30 %0 1’5 3.0
Figure 18 Figure 19
3.0 1~473  |1~64 30
v
1.5 1.5
L L 1
0 1.5 3.0 0 1.5 3.0

kd /| kd/w
Figure 16. Sway added mass coefficient, x, plotted against kd/m for a truncated cylinder, geometry
A, with a/d = a/H = 0.1, D/H = 0.5.
Figure 17. Sway added mass coefficient, x, plotted against kd/m for a truncated cylinder, geometry
B, with a/d =a/H =0.1, D/H = 0.5.
Figure 18. Sway damping coefficient, v, plotted against £d/m for a truncated cylinder, geometry 4,
with a/d =a/H =0.1, D/H = 0.5.

Figure 19. Sway damping coefficient, v, plotted against kd/m for a truncated cylinder, geometry B,
with a/d = a/H = 0.1, D/H = 0.5.

Figure 20 Figure 21

0.12

u

0.08

0 1.5 3.0 1.5 3.0
kd/m kd|w

Figure 20. Heave added mass coefficient, u, plotted against kd/m for three truncated cylinders,
geometry 4, with a/d = 0.1 (——), 0.2 (- ) and 0.5 (——-). In all cases a/H = 0.1, D/H = 0.2.

Figure 21. Heave damping coefficient, v, plotted against kd/m for three truncated cylinders,
geometry 4, with a/d =0.1 (——), 0.2 (-++ yand 0.5 (——-). In all cases a/H = 0.1, D/H = 0.2.
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Figure 22 Figure 23
& 0.16 &
v
0.08
0 \
—01 T, e
0 1.5 3.0 0 1.5 3.0
kd /[ kd/

Figure 22. Heave added mass coefficient, u, plotted against kd/m for two truncated cylinders,
geometry B, with a/d = 0.1 (== ) and 0.4 (——). In both cases a/H = 0.1, D/H = 0.2.

Figure 23. Heave damping coefficient, v, plotted against kd/m for two truncated cylinders,
geometry B, with a/d = 0.1 (--+--- ) and 0.4 (——). In both cases a/H = 0.1, D/H = 0.2.

then
¢L(r,0,2) = UP(r,2)+Ua 3 gm(z){Z Bom Py m(r) cosql+ % ﬂg’qu’m(r)sinq@}.
m=0 q=0 =1
(6.11)
If instead of defining ., ,,(r) by (5.10) we define it by
J , =0,
Tym(7) ={ o), (5.12)
’ I(kyr), m>1,
and also choose
P(r,z) =2+ K (5.13)

for heave motions, then (5.11) is a suitable form for geometry B as well. Thus both
problems can now be solved simultancously.
Continuity of the pressure across » = a is equivalent to

¢'a,0,2) = ¢ (a,0,2) z€L. (5.14)

The orthogonality of the trigonometric functions and application of the operator

1
mj o ga(z)dz
A4 L

results in

ﬂi},n'%q,n(a) = E Cmn Z [7%2q,m(a) 3qp+Es{29’220;m} fzq,m(a)]agp,m
m=0 p=0
“On [ pa,2)g,)dz (5.15)
alL L
ﬂ;q+1,n'ﬂ2q+1,n(a’) = X Omn z I‘%p2q+1,m(a) 8(]1)
m=0 p=0

+E2q+1,2p+1;m} Zopiy m(@)] 5,00, (5.16)

18

BignFrgn(@) = X Cop X [Hyy (@) 8y +E (29, 2p5m} Sy m(@)] 0, 0 (g > 0),
m=0 p=1
(5.17)
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ﬂgqﬂ, n"¢2q+l, a(@) =

3

Cmn Z [%2q+1,m(a’) 6qp
0 =0
+EA29+ 1,2+ 13m) fogr m(@)] 05p iy s (5.18)
for all ¢g,n = 0.
Assuming continuity of the horizontal velocity on r = a, z€ L, and a general form
for the boundary condition on r = a, ze L¢ leads to the boundary condition

1 L
2 og/or, pel, (5.19)
or U( > G5 (2)cosnl+ X GA(z) sinnO), zel’.

n=0 n=1

The orthogonality of the trigonometric functions and application of the operator

%f}] o fulz) dz

results in

2 a[H sy (@) Oy + B {29, 2050} Foy (@) 45y 5

=0

all] @ , J oP
= S S Bran 2 | S @2 A 7 (5:20)
m=0 L

2 a[%;q+1,n(a) 6qp +ES{QCI+ 1; 220"‘ 1 ;n} féq+1,n(a’>] ‘x;p+l,n
»=0
_ o]
H

Ms

Cnmj;q+1,m(a’>ﬁzq+l,m+'g;§q+1,n’ (5.21)
0

m

2 a[%;q, n(a) 8(117 +Ea{2% 21’ 5 %} jlzq, n(a)] agp, n
p=1

alL|

L
H

M8

Coum 20, m(@) Pogm+F 50 (9>0), (5.22)

0

m

pX a[‘%;q+l,n(a) 8qp +H,{29+1,2p+1;0} /;q+1,n(a’)] O‘gp+1,n

=0

all] $ , . Fa
= H Onmj2q+1,m(a’)ﬂ2q+1,m+'/’2q+1,n (5.23)
m=0

for all ¢, n=>0, where

1
Fogn= ﬁf G5(2) f,(2) dz (5.24)
LC
I a —_ 1
Fon=71 Go@)falz) dz (5.25)
LC
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These equations can be combined with (5.15)—(5.18) to give a general set of infinite
systems of equations. We get

2 a[H 5y (@) O + B {29, 2050} F3y (@) 05 s

p=0

0

- Z ‘Dnr, 2q 2 [‘%2(1, r(a’) 8qp +Es{29> 2}7 > T} qu, r(a’)] o‘;p, r
=0

r=0

) oP & Iy () .
=ﬁq° L<a(a,z)fn(z)— Z_ Cnmm])(a,z)gm(z))dz—l-g’;q’n, g,m =0, (5.26)

Z a’[‘%/zq+1,n(a) 8(119 +Es{2q + 1’ 2p + 1 ; ’IZ} féq+1, n(a’)] a2p+1, n
=0
©

- Z Dnr,2q+1 Z [%q+1,r(a) 8qp +Es{2q+ 1> 220‘" 1 5 7'} f2q+1,r(a’)] O‘;p+1,r
»=0

r=0

=Fsperm 120, (527)

2 a[H 5y (@) g+ H,{2q, 2D 0} F oy n(@)] 05, 0

=0
- Z Dnr,2q Z [%M,r(a) 6(11) +Ea{2q’ 2}?;7‘}%2(1’7(0/)] o‘gp,r = gggq,n’ q = 1’ n = O’
r=0 =0
(5.28)
Z a[%éq+1,n(a) 8qp +Ea{2q+ 1) 2p+ 1 5 n} j;q+1,n(a’)] a’;p+1,n
=0
- Z Dnr,2q+1 Z [‘%2q+1,r(a) 6qp +Ea{2q+ 1> 2p+ 1 ;7’} f2q+1,r(a)] O(’gp+1,r
r=0 =0
=Frn Gn=0, (529)
all| Z I ma)
where Dnr, q = _f—l_ ”EO Onm Orm m . (530)

In the case of the cylinder extending throughout the depth we found that we
obtained a different set of equations for each depth mode. We see from the equations
above that for truncated cylinders this is no longer the case and all the depth modes
are coupled.

For surge motion we write

¢'(r.0,2) = Ua X 9,(2) X fige1,m Fgr1,m(r) €08 (29 +1) 0, (5.31)
m=0 q=0
$1r.0.2) = Ua 3 f(2) E ogir, m Biger, m (5.32)
m=0 q=0

G5(z) = 1 and G5(2) = G4(z) = 0 otherwise. The unknown coefficients of,,, ,, and
B5q+1,m can be found by solving (5.27) and then (5.16). If we truncate (5.27) by letting
g range from O to N and » range from 0 to M we see that we have to solve an (N+1)
M+1)x (N+1)(M+1) system of equations. The added mass and damping
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The radiation and scattering of surface waves 351

coefficients, non-dimensionalized in the same way as was done for the cylinder
extending throughout the depth, are given by

<)
ptiv=—3%

m=0

ﬁi,m(%l,m(m ot S B, 2p+ L im) A (@) am) (5.33)
p=0

A check on the numerical results is provided by the relationship between the
damping coefficient and the energy radiated down the channel which is given by
(3.40). Values of N =1 and M = 8 were again used to compute the results.

The effect of the length of a truncated cylinder on its hydrodynamic properties is
illustrated by figures 12-15. Figures 12 and 13 show the added mass of cylinders with
D/H = 0.1, 0.5 and 0.9 for both geometry 4 and geometry B. The curves show that
the added mass depends on the length of the cylinder but that the values for a
cylinder immersed through the free surface and for one resting on the bottom are
very similar. As in the case of the cylinder extending throughout the depth there is
very little resonant response near the cut-off frequencies with slightly more spiky
behaviour in the case of geometry A.

In the case of the damping coefficient, shown in figures 14 and 15 we see that the
different geometries produce markedly different results. This is not surprising since
the damping coefficient is related to the wave making ability of a body and this is
clearly going to be much greater in the case of a body which intersects the free surface
than for one which is totally submerged.

For sway motion we write

¢I(Ta0az) = Ua’ Z gm(z) Z ﬂgq+l,mj2q+1,m(lr) Sin (2614‘ 1)0’ (534)
m=0 q=0
¢H(r>0> Z) = Ua’ 2 fm(z) 2 agq+1,m¢gq+1,m> (535)
m=0 q=0

@*z) =1 and G5 (z) = G2(z) = 0 otherwise. The unknown coefficients of,,, , and
f441,m can be found by solving (5.29) and then (5.18). The added mass and damping
coefficients, non-dimensionalized as above, are given by

f?,m (%l,m(a’) a?,m + Z Ea{1> 2}7'1' 1 ;m} jl,m(a’) a§p+1,m) : (536)

p=0

p+iv = —

s

0

The relation between the damping coefficient and the radiated energy is given by
(3.48) in this case.

It was found that to achieve satisfactory convergence in the values for the added
mass it was necessary to increase the number of multipoles used. Values of N = 2 and
M = 8 were used in computing the results for added mass and damping shown in
figures 16-19. Comparison with figures 3 and 4 shows that the results for a truncated
cylinder immersed through the free surface are qualitatively the same as for the case
of a cylinder extending throughout the depth. Away from the cut-off frequencies the
value of the added mass for the truncated cylinder is less than that of the cylinder
spanning the whole depth as was observed in the surge case above. The results for the
case of a truncated cylinder on the bottom of the channel are rather different with
the spikes near all but the first cut-off almost totally suppressed and again, as in the
surface case, a very small damping coefficient. We note, however, that evidence for the
existence of trapped modes appears in both cases.
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Table 1. Values of kd at which trapped modes occur when a/d = 0.5, geometry A

a/H
D/H 0.05 0.1 0.5
0.05 1.48 1.54 1.57
0.1 1.41 1.47 1.57
0.2 1.39 1.41 1.55
0.5 1.39 1.39 1.48
0.9 1.39 1.39 1.41

Table 2. Values of kd at which trapped modes occur when a/d = 0.5, geometry B

a/H
D/H 0.05 0.1 0.5
0.05 1.55 1.49 1.32
0.1 1.57 1.55 1.40
0.2 1.57 1.57 1.47
0.5 1.57 1.57 1.55
0.9 1.57 1.57 1.57

Results for surge and sway with geometry 4 are given in I11. Referring to figure
6a in their paper we see that they fail to predict the singular behaviour of the sway
added mass coefficient below the first cut-off frequency.

With careful computation the values of kd at which the equations are singular can
be computed for a variety of paramecter values. Typical results are shown in tables
1 and 2 in which a/d = 0.5. From the theory of Callan et al. (1991) we know that the
correct value for the trapped mode frequency for a cylinder spanning the whole
depth with this radius to channel semi-width ratio is 1.391 to three decimal places.
As was mentioned previously the value of kd at which the singularity occurs in this
case is independent of a/H. In the case of truncated cylinders this is no longer the
case.

Table 1 shows results accurate to two decimal places for geometry A for a range
of values of a/H and D/H. We see that as D/H — 1, corresponding to the gap below
the cylinder tending to zero, the value of kd predicted for the trapped mode
frequency appears to tend to the value predicted by Callan et al. (1991). Note that
it & 1.571 and a value of 1.57 in the table indicates a value of kd in the range 1.565
< kd < . Table 2 shows the same set of results for geometry B. Now as the cylinder
fills the entire water depth D/H —0 but we see that kd - 1.39 in this limit. This is
due to the fundamental difference between a problem where a body intersects the free
surface and one where it does not. The singularity of the limit D/H -0 was noted by
Miles (1983). We note also that for most parameter values in the table the value of
kd at which a trapped mode occurs is very close to in.

For heave motion we write

¢l(r,0,2) = UP(r,2)+Ua ¥ ¢,,(2) X B, m Faq, m(r) cos 2q0, (5.37)
m=0 q=0

¢”(V’0’z) = Ua E fm(z) 2 O(‘Zq,mgé;q,m (538)
m=0 q=0
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and G5 (2) = G%(z) = 0. The unknown coefficients a3, ,, and g5, ,, can be found by
solving (5.26) and then (5.15). The added mass and damping coefficients, non-
dimensionalized as above, are given by

. 2 a a
n+iv = azﬂ{jo rP(r, —D)dr+a 2 Im(—D) B3, mfo w7 )d?} (5.39)

m=0
The final integral in this expression can always be evaluated explicitly since
X
f tJ,(8) dt = xJ;(x)
0
(Abramowitz & Stegun 1964, equation 11.3.20), and
X
J tly(t) dt = I, ()
0

(Abramowitz & Stegun (1964), equation 11.3.25). Various integrals involving the
function P are required and these are listed below. For geometry 4 we have

J: rP(r, —D)dr = 1a® (4|L| |L |> (5.40)
LP(a, 2)go(2) dz = alL| (ﬁ_[@%)’ (5.41)
LP(a 2)g,(z )dz———\/-\%%, n>1, (5.42)
Laai) (@, 2) f,(2) %, nz=0, (5.43)

whereas for geometry B we have

Jw rP(r, —D)dr = }a*(K*—D), (5.44)
1
JLP(a, 2)gn(z)dz = —m, n =0, (5.45)
oP
f 5 (.2 fu(x)dz = 0. (5.46)

To achieve satisfactory convergence in the values for the added mass it was
necessary to increase the number of depth modes and values of N=1 and M = 16
were used to compute the results shown.

For geometry A this is the problem considered in I and II. Figures 20 and 21 show
the added mass and damping coefficients for three cylinders with a/H = 0.1 and D/H
= 0.2. The curves for a/d = 0.1, 0.2 and 0.5 correspond to those marked 10, 5 and
2 respectively in figure 5a, b in II. The different non-dimensionalization and scaling
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account for the factor of 100. The curves for the damping coefficient show excellent
agreement as do the added mass curves for a/d = 0.1 and 0.2 but the added mass
curve for a/d = 0.5 is predicted to be slightly greater than the values shown in IT.

Figures 22 and 23 show added mass and damping curves for a heaving truncated
cylinder extending from the bottom, four fifths of the way to the free surface, again
with a/H = 0.1. The figures show clearly how the larger cylinder suppresses the
higher resonant frequencies.

To solve the scattering problem we write

¢l(r,0,2) = Usa

R

Im(2) 2 B, m Iq,m(r) cos g0, (5.47)
q=0

0

0

! (r,0,2) = Usa[fo(z) § € 19 (kr)cosqi+ X f,(2) X “Z,m¢f,,m}, (5.48)

q=0 m=0 q=0

where U, = —igAMj/aw cosh kH as before. The application of the boundary
conditions on r = a results in the following two systems of equations:

2ol H o, n(@) Oy +E (29, 2p 30} F5y n(@)] 5y
=0
=X Dy aq X [Hyy, (@) 8y +H {29, 2p; 7} Sy (@)] 03,
r=0 »=0

= Gq( - l)q[DnO, 2q ']2q(ka) - 80n kaJ;q(ka)]a q,n = O’ (549)
and

a[%;q+1,n(a’) 6(11) +Es{2q+ 1’ 2p+ 1 ; n} féqul, n(a)J a2p+1,n

0

58

o0 0

- z Dnr, 2q+1 Z [%2q+1,r(a) 6(11} +Es{2q+ 1’ 2p+ 1 > 7'} j2q+1,r(a)J a3p+1,7

r=0 =0
= 21(= 1Dy, 0911 2q41(ka) = &y, kad i1 (ka)], g m = 0. (5.50)

Since the potential in region II is the same as for the scattering problem for a
cylinder extending throughout the depth except for terms which decay exponentially
as || - oo the results concerning the far field, equations (4.9)—(4.15), all hold in this
case also.

Results show that as kd increases the results for geometry 4 quickly tend to those
for the case of a cylinder extending throughout the depth, as one would expect since
very short waves are not influenced by the draught of the body. On the other hand
in the case of geometry B short waves are not influenced by the presences of the body
at all and results show that virtually all the energy is retained in the fundamental
propagating mode (|7,|* & 1) for all but the longest waves.

Figure 24 shows how the draught of a truncated cylinder immersed through the
free surface for which a/d =0.9 and a/H = 0.1 influences the value of the
fundamental reflection coefficient. We can see that as the length of the cylinder is
decreased the energy associated with the fundamental reflected mode is slightly
decreased over the range 0 < kd < #m, corresponding to 0 < ka < 2.26, but that
above this value the effect of the draught of the cylinder is negligible and the results
are the same as those shown in figure 8.
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0.8

IRo|*
0.4

0 0.4 0.8

kdln
Figure 24. Energy associated with the fundamental reflected mode, |R|?, for three truncated
c§/rilind%rs9, geometry 4, with D/H = 0.1 ( ), 0.2 (0o ) and 0.5 (——). In all cases a/H = 0.1,
aj/d =0.9.

6. Conclusion

In this paper we have developed new expressions for multipoles suitable for the
solution of radiation and scattering problems concerning vertical circular cylinders
situated on the centreline of a channel and either extending throughout the water
depth or truncated so as to only fill part of the depth. The form of these multipoles
shows very clearly the way the cut-off frequencies of the channel effect the far-field
nature of the solution.

By using these multipoles we have solved a wide variety of different radiation and
scattering problems and presented many results. Previous work on the hydrodynamic
properties of bodies in channels has shown that the resonant frequencies of the
channel can cause very ‘spiky’ behaviour. Here we have shown that, whereas this is
the case for heave and sway motions, both of which are symmetric about a line
perpendicular to the channel walls, it is not the case for surge motion which is
antisymmetric about such a line. The different behaviour of the multipoles as kd
approaches the resonant frequencies of the channel depending on their symmetry
about a line across the channel explains why this is the case.

The method of solution is more powerful than previous methods used to solve
similar problems. In particular the occurrence of modes other than the fundamental
when kd > in is accurately modelled and the solutions are, in principle, exact. The
problems considered in this paper have been formulated in a general way so that
many different physical problems have been solved by essentially the same
procedure.

All the problems considered have involved vertical circular cylinders situated on the
centreline of a channel. The most obvious extension of the ideas in this paper would
be the derivation of multipoles suitable for problems with cylinders placed at other
points in the channel.

We thank Dr P. Mclver for providing us with his notes on integral representations for wave
functions and for many useful discussions. C.M. L. is supported by SERC under grant number
GR/F/83969.
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Appendix. Behaviour of channel multipoles near cut-off frequencies

We are interested in the behaviour of the m = 0 multipoles as kd approaches the
cut-off frequencies for the channel. Specifically we wish to examine the limits

lim HJ{q,n;0}, lim  Hdq,n;0}, lim  H,/{q,n;0}, lim  E{q,n;0}.

kd->jgmt kd->(fgt1)n— kd—>(ja—Hnt kd-> (gt n—

The particular case of lim, .1, #,{2¢g+1,2n+ 1;0} was considered in detail in Callan
et al. (1991) and only a brief description of the technicalities involved will be given
here.

We will start by considering £, {2¢+1,2n+1;0}, defined by (2.56), in the limit as
kd - (j,+3)m—.j, =0,1,.... Since 7', p =1, ..., j, is bounded in this limit the real
part of B, {29+ 1, 2n+ 1,0}, given by (2.60) is bounded. If we split the imaginary part
into two integrals, one from 0 to 1 and the other from 1 to infinity and then put
t = sinw in the first of these, we can show that

BE{2¢+1,2n+1;0}] ~ —%f tan (kd cosu) cos (2¢+ 1) wcos (2n+ 1) udu.

1
—an

The value of the integral in the limit kd — (j,+3) ®— can now be found by deforming

the path of integration upwards over the pole at w = iy, where kd cosh y = (j, +3) 7.

Thus we finally end up with the result that if kd = (j,+3) m(1—3€),e > 0, then
B 20+1,2n41;0} ~ —4i/(j,+Y) et as e—>0. (A1)

If we now consider the limit kd - (j,—3) n+,j, = 1,2, ..., we find that the imaginary
part is bounded but now the real part is not and from (2.60) we see that if kd =
(jo—3) m(1+3€), € > 0, then

B {2¢+1,2n+1;0} ~4/(j,—Ymet as e—>0. (A 2)

Next we consider ¥ {2q, 2n;0}, defined by (2.53). A similar analysis to the above
shows that if kd = (j,+1)n(1—%€),e > 0,5, =0,1,..., then

Ed2q,2n;0} ~ —2¢,i/(j,+1)met as €0, (A 3)
whereas if kd = j,m(1+3€),e > 0,75, =1,2,..., then
E{2q,2n;0} ~ 2¢,/j,met as e—>0. (A 4)

In deriving these results we have used the fact that lim, ,c,(!) = 1. On the other
hand lim, , s,(t) = 0 and we can use this to show that both ¥ {2¢+1,2n+1;0} and
E {2q,2n;0} are bounded as kd approaches the cut-off frequencies from above or
below.

References

Abramowitz, M. & Stegun, I. A. 1964 Handbook of mathematical functions. New York: Dover.

Caligal, S. M. & Sabuncu, T. 1989 A study of a heaving vertical circular cylinder in a towing tank.
J. Ship Res. 33 (2), 107-114.

Callan, M., Linton, C. M. & Evans, D. V. 1991 Trapped modes in two-dimensional wave guides.
J. Fluid Mech. 229, 51-64.

Eatock Taylor, R. & Hung, S. M. 1985 Mean drift forces on an articulated column oscillating in
a wave tank. Appl. Ocean Res. T (2), 66-78.

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

\
\

A
%A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

ﬁ\
A

4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A

OF

) N

OF

Downloaded from rsta.royalsocietypublishing.org

The radiation and scattering of surface waves 357

Erdélyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F. G. 1953 Higher transcendental functions,
vol. 2. McGraw-Hill.
von Ignatowsky, W. 1914 Zur Theorie der Gitter. Ann. Physik 44.

von Ignatowsky, W. 1915 Uber Reihen mit Zylinderfunctionen nach dem Vielfachen des
Argumentes. Archiv Mathematik Physik 23, 193-219.

Lamb, H. 1945 Hydrodynamics. New York: Dover.

Linton, C. M. & Evans D.V. 1990 The interaction of waves with arrays of vertical circular
cylinders. J. Fluid Mech. 215, 549-569.

MacCamy, R. C. & Fuchs, R. A. 1954 Wave forces on piles: A diffraction theory. US Army Coastal
Engineering Research Center, Tech. Mem. 69.

Martin, P. A. & Dalrymple, R. A. 1988 Scattering of long waves by cylindrical obstacles and
gratings using matched asymptotic expansions. J. Fluid Mech. 188, 465-490.

Miles, J. W. 1983 Surface-wave diffraction by a periodic row of submerged ducts. J. Fluid Mech.
128, 155-180.

Spring, B. H. & Monkmeyer, P. L. 1974 Interaction of plane waves with vertical cylinders. In
Proc. 14th Intl Conf. on Coastal Engineering, ch. 107, pp. 1828-1848.

Spring, B. H. & Monkmeyer, P. L. 1975 Interaction of plane waves with a row of cylinders. In
Proc. 3rd Conf. on Civil Eng in Oceans, 979-998. Newark : ASCE.

Srokosz, M. A. 1980 Some relations for bodies in a canal, with an application to wave-power
absorption. J. Fluid Mech. 99, 145-162.

Thomas, G. P. 1991 The diffraction of water waves by a circular cylinder in a channel. Ocean
Engng 18, 17-44.

Thorne, R. C. 1953 Multipole expansions in the theory of surface waves. Proc. Camb. Phil. Soc. 49,
707-716.

Twersky, V. 1952 Multiple scattering of radiation by an arbitrary configuration of parallel
cylinders. J. Acoust. Soc. Am. 24, 42—-46.

Twersky, V. 1956 On the scattering of waves by an infinite grating. IRE Trans. Antennas
Propagation 4, 330-345.

Twersky, V. 1962 On scattering of waves by the infinite grating of circular cylinders. IRE Trans.
Antennas Propagation 10, 737-765.

Wehausen, J. V. 1971 The motion of floating bodies. 4. Rev. Fluid Mech. 3, 237-268.

Yeung, R. W. & Sphaier, S. H. 1989 Wave-interference effects on a truncated cylinder in a
channel. J. Engng Math. 23, 95-117.

Yeung, R. W. & Sphaier, S. H. 1989 Wave-interference effects on a truncated cylinder in a towing
tank. In Proc. PRADS ’89. Varna, Bulgaria.

Zgviska, F. 1913 Uber die Beugung elektromagnetischer Wellen an parallelen, unendlich langen
Kreiszylindern. Ann. Physik 40, 1023-1056.

Received 24 April 1991 ; accepted 5 June 1991

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

